The Goal-oriented Orchestration of Agent Tasks is a sophisticated system that facilitates seamless communication and collaboration among AI agents to execute specific tasks. Instead of relying on a single AI agent, this system leverages the expertise of multiple agents to achieve optimal results.
For instance, let's consider the example of selecting the best day for a 20km semi-marathon next month. The Weather agent retrieves accurate forecasts, the Web search agent identifies optimal running conditions, and the Wolfram agent calculates the "best day." This interconnectedness of AI agents streamlines complex tasks with ease and precision.
The concept of LLMs as the central mainframe for autonomous agents is intriguing. Demonstrations like AutoGPT, GPT-Engineer, and BabyAGI provide simple illustrations of this idea. LLMs have the potential to go beyond generating well-written copies, stories, essays, and programs. They can serve as powerful General Task Solvers, which is precisely what the Goal-oriented Orchestration of Agent Taskforce (GOAT.AI) aims to achieve.
To ensure the efficient functioning of the goal-oriented orchestration system, three core components must operate effectively:
- Planning The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex assignments. The agent engages in self-critique and reflection on past actions, learning from mistakes and refining approaches for future steps, resulting in improved overall outcomes.
- Memory Short-term memory refers to the model's ability to process a significant amount of text without any degradation in quality. Currently, LLMs can provide high-quality answers for approximately 128k tokens. Long-term memory allows the agent to store and recall unlimited amounts of information over extended periods. This is achieved by utilizing an external vector store for efficient RAG systems.
- Action Space The agent gains the capability to call external APIs, acquiring additional information beyond its pre-training. This includes accessing real-time information, executing code, accessing proprietary information sources, and invoking other agents for information retrieval. The action space also encompasses performing specific actions to obtain desired outcomes, such as sending emails, launching apps, or opening doors. These actions are typically executed through various APIs. Furthermore, agents can invoke other agents for actionable events within their domain of access.
For more information on our terms and privacy policies, please refer to the following links:
- Terms
- Privacy
Übersicht
GOAT.AI - Task to AI Agents ist eine Freeware-Software aus der Kategorie System & Utilities, die von Adaptive Plus Inc. entwickelt wird.
Die neueste Version ist 2.2.6, veröffentlicht am 02.01.2024. Die erste Version wurde unserer Datenbank am 14.12.2023 hinzugefügt.
GOAT.AI - Task to AI Agents läuft auf folgenden Betriebssystemen: iOS.
Die Nutzer haben GOAT.AI - Task to AI Agents eine Bewertung von 5 von 5 Sternen gegeben.
Verwandte Produkte
18.12.2024 | Oromo Quran MP3 Translation 2.1 |
18.12.2024 | Cata! - Offers & flyers 1.1.0 |
18.12.2024 | Tank story 2 1.061 |
18.12.2024 | Buchstaben Schreiben 2.1.35 |
28.02.2024 | Candy Bomb 9.6.5089 |
12.12.2024 | TeamViewer patch available |
11.12.2024 | Adobe December 2024 Patch Day |
05.12.2024 | Best free torrent clients for 2025 |
03.12.2024 | AnyDesk 9 available |
28.11.2024 | Critical updates: Microsoft patches vulnerabilities |
Neueste Reviews
Wondershare Virtual Location
Wondershare Virtual Location: Ändern Sie ganz einfach Ihren GPS-Standort |
|
JPKI利用者ソフト
Sicheres digitales Identitätsmanagement mit JPKI利用者ソフト |
|
Microsoft Edge Canary
Schnelles und innovatives Surferlebnis mit Microsoft Edge Canary! |
|
Classic FTP Mac
Effiziente Dateiübertragung mit Classic FTP für Mac-Benutzer |
|
@BIOS
Steigern Sie die Leistung Ihres PCs mit @BIOS von Gigabyte |
|
x264vfw - H.264/MPEG-4 AVC codec
Effizienter H.264/MPEG-4 AVC-Codec für die Videocodierung. |